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1 Introduction

Detecting chemical vapors requires a sensing system combined with signal processing algorithms. The sensing systems
can range from a sophisticated GC-MS to an array of simple chemical sensors that are found in typical e-nose applications.
The work described in this paper uses surface acoustic wave sensors (SAWs) that are designed primarily for the detection
of chemical warfare agents (CWAs). This differs from most enose applications [1] slightly as they only try to remember
the signature of a particular mix of gases (i.e. smell) with a limited ability to isolate the particular gases or determine
their concentration.

The motivation for this work is to develop a handheld chemical detector specifically targeted at CWAs for use by personnel
such as the military and homeland security. The requirements of a handheld device rule out well known expensive and
bulky solutions such as GC-MS or laser spectroscopy systems, Thus, an array of inexpensive, simple sensors are employed
with the use of pattern recognition processing.

Currently a laboratory based system is used. However, to better simulate real world conditions it is open to the environment
where laboratory air is pulled through a large PVC pipe in which the CWA simulants (DCP (1,5-dichloropentane) -
mustard, DMMP (dimethyl methylphosphonate) - nerve) and interferents (methanol, hexane and diesel oil fumes) are
injected, shown in Fig. 1. A flow of about 5 L/min is allowed through the 5cm diameter pipe and 200ccm is drawn off
to a small 22 cm 3 sensor chamber.

Pump/ 
Sno

SMFC Chamb-• ensr Open
Chamber DCP /• /End

Fit rPVC Pipe /

DMMP

Figure 1. The experimental system.

2 Algorithm Preparation

In a typical enose system the preprocessed data is converted into meaningful results via the use of one or more classifiers
such as neural networks, support vector machines or probabilistic algorithms for example. The details of the classifier
will not be discussed here, but instead will be treated as a black box system that outputs a list of classes and their
corresponding confidence levels. The selected class for an unknown input pattern is the class with the highest confidence
level, k = argmaxj 71j, where 71j is the confidence of class j being the unknown pattern.

Three strategies can be used for identification and quantification shown in Fig. 2. Brief details of these three strategies
follow.

One Step Two Step MappingI oData D ata I

Gas/Conc Gas Conc Gas Conc

Figure 2. Methods used for classifying and quantitating analytes.

IEEE Sensors 2004 Conference (24-27-Oct-2004) - Greg Harmer Page 2



" One Step Method

This method is one of the easiest approaches, specially if you have an 'off-the-shelf classifier' available. Each analyte
class is divided into several subclasses of different concentrations so the classifier actually trains to gas/conc pairs.
This requires the concentrations to be discretized otherwise there may be reasonable overlapping of the classes,
which may degrade the performance of some classifiers.

This method is best suited for analytes that only occur at specific concentrations. To increase the concentration
resolution the number of classes need to be increased, which may cause the classification problem to quickly get
very large.

Notwithstanding, probably due to the setup simplicity it has been used for a number of applications [1], though it
is acknowledged that this method is not appropriate if the problem size is likely to expand.

" Two Step Method

The analyte is first determined through the use of a classifier, then the concentration is found using this knowledge.
Once the analyte is known, the task of concentration determination is reasonably easy, and a number of methods
would suffice.

It is important to choose the correct feature types to use at each stage. In the first stage we wish to eliminate
any concentration information, leaving only the analyte information. Since the concentration predominately effects
the magnitude of the response normalizing the points seems a logical choice. For the second stage, the use of
magnitude information with simple prediction algorithm would do the job. Dividing the problem into two parts
vastly reduces the computational demand on the classifier and the concentrations can be from a continuous range.
This method has also been used by a number of people [2].

" Mapping Method

The idea for this method is not new, though a recent paper where it is applied to e-noses highlights its potential [3].
It uses the fact that each sensor responds slightly different to each analyte. By using the response-concentration
mapping function for each sensor/analyte combination, the inverse function can be used to back-calculate the
concentration from the response.

For each gas/sensor combination the response-concentration dependence can be described by a mapping (or trans-

fer) function,
rtij = fij(cj), (1)

where i = 1, ... , in sensors, j = 1,.... , n analytes and cj is the concentration of the 3 th analyte.

Typically, we expect this curve to be nonlinear, which could be modeled by cubic splines or fitted to some parametric
equation. To find the required inverse, f needs to be monotonic, otherwise f'- will be bistable and is of limited
use when trying to back calculate the concentration.

Moreover, the use of the algorithm only requires the use of f- for the calculation of

-Ij = 4i1 (r ). (2)

which we trained a small neural network to learn. The trade-off for versatility is it does not extrapolate outside the
concentration limits of the training data, though a modification would not be difficult to implement.

If the unknown candidate is from the jth analyte then the concentration calculated from all the sensors should be
very close, whereas they should vary widely for the other gases. Hence, we can use ? = V I as a "closeness"
measure for each j. Therefore the best candidate will have the smallest variance (or standard deviation), k =

arg linj orj with a concentration of Pjk = E[cik]. Using the standard deviations we defined a confidence indicator
of

I i= I/7k (3)

This is also a one step method and the analytes can have a continuous concentration range.

The main difference between the mapping and the two step method is the way the winning analyte is chosen.
Either by a purpose built classifier or a minimum error approach respectively.

Arguably this could be considered as an integrated two step methods approach since we require the knowledge
of gas identify before we can give a concentration. However, we will list it separately since it does not require a
purpose built classifier. One may ask how does this method differ from using the steady-state fingerprints that are
commonly used? An explanation is given in the paper.
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The following work is based on the mapping method for classification. This method offers a slight processing gain
over using standard steady-state fingerprint methods, details are given in the paper. Additionally, the method is easy
to implement in terms of necessary training data and microprocessor implementation. It is also very tolerant to failed
sensors (does not require retraining), which easily allows redundancy to be built in to the system.

2.1 Ve ification

The algorithms were first verified in Matlab with artificially generated data. Once verified, selective sensors to DCP
and DMMP were selected and exposed to the training protocol (described next section). the data gained was processed
off-line in Matlab.

The testing part of the classifier coded in LabView to work real-time in one of SRD's test systems. A number of tests
were run in real-time to verify the operation of the classifier, in particular its robustness. The algorithm was still able to
perform when sensors were removed at random. Sensors were also remove automatically when there was a large spike in
the output due to interference.

3 Data Preparation

3.1 Sensor Validation

In order for the mapping method to work, the magnitude of response must be consistent independent of the history of
the sensor. That is, the sensor needs to be reproducible with respect to the input concentration. Note that when the
concentration changes sharply, some time is required for equilibrium to be reached, which is what needs to be reproducible.
To verify our sensors are reproducible five gas profiles that have vastly different starting profiles but that end with the
same concentration were tested, shown in Fig. 3. Three minutes were given at the final concentration to allow the sensor
to reach equilibrium.

so . . .
- DCR-S--ocpo

40- 150 - DCP..I

- DCP.A2

30- 
P-4

_ 100

-DCPA4 50
10

0 20 40 60 80 100 120 0 20 40 60 80 100 120
rime Iminl Time rniln]

Figure 3. The left plot shows the five profiles for DCP. with the right plot showing the two possible background profiles using
diesel Other gases have same shape profiles just with different flow rates

Figure 4 shows the corresponding responses to the profiles of Fig. 3 of a SAW towards DCP, DMMP, diesel and methanol.
For DCP there is excellent consistency at the end of the 10 minutes exposure. The error bars show one standard deviation
about the mean, thus the small error bars denote good repeatability. The consistency of DMMP and diesel is not as
good as DCP, but sufficient.

For this work methanol is an interferent and SAWs have been designed to not react with it. Thus the large error bars
coupled with the small response magnitudes indicate the responses are not much more than noise, hence this is a good
result. The results are similar for hexane (plots not shown). The other interferent, diesel on the other hand shows a
quite measurable response due to the chemical similarity of some its components to DCP. However, the magnitude of
response to diesel is much lower then those for DCP and DMMP.
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Figure 4. SAW responses to the validation profiles shown in Fig. 3 The mean of five responses is shown with the error bars

showing ±O about the mean.

Figure 5 shows the corresponding responses to the profiles for one of the SMOs (W0 3 ). The consistency at the end of

the 10 minute exposure for DCP, diesel and methanol is very good. For DMMP the SMO is very slow at tracking the
concentrations, which leads to its poor performance. Additionally, the SMOs do not show any selectivity towards the

analytes or immunity towards the interferents.

In comparison of these SMO responses to the SAW responses (Fig. 4), the SAWs show more 'crispness', which indicates

they reach equilibrium quicker, as evident by shorter recovery times.

When dealing with individual gases the sensors do not necessarily have to be selective, they just need to have different

mapping functions. However, when dealing with interferents the sensor needs to be reasonably selective, which is shown
by the magnitudes of the responses to each of the gases in Fig. 4. Figure 6 shows the responses for DMMP and DCP

with diesel in the background carrier air; the top two plots are SAWs and the bottom two plots are SMOs. Diesel was

chosen because it is one of the strongest influencing interferents for both SAWs and SMOs. That is, it is the interferent

they have immunity to.

The SAW responses (top plot in Fig. 6) show very good selectivity towards DCP and DMMP. The responses to the

analyte alone and with a background interferent are very repeatable, especially for DCP. The variance in the DMMP
response may be due to the use of the open air test system (shown in Fig. 1). Towards the end of the exposures where

the analyte concentration is constant there is a very small influence of the drifting background.

The corresponding responses for SMOs (bottom plots in Fig. 6) do not show the same selectivity as the SAWs. Whilst the

individual and constant background exposures are repeatable to responses to the drifting background are quite attenuated.

Primarily for this reason only SAW s were used in the construction of the sensor array. Thus, the results shown in Fig. 4

and Fig. 6 show that the SAWs have the characteristics that are required by the mapping function. That is they have

good selectivity towards the gases to be detected and they are very invariant to the exposure history of the gases.
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Figure 5. SMO responses (mean of five) to the va idation profiles shown in Fig 3.

3.2 Training Data

One of the advantages of the mapping technique is the procedure of training is relatively sample. We simply require
the concentration/magnitude relations for each gas sensor pair. This is obtained by measuring the response at different
concentrations and using some technique to learn this relationship. A sequence of hits with increasing concentration wes
delivered to the sensors and the response magnitude measured at the end of the exposure. Examples for a SAW and
SMO are shown in Fig. 7. Three minute hits were used to approximate steady-state operation. As seen from Fig. 7 this
is ok for the SAWs, but the SMOs would require more time to reach the same level of approximation.

To learn the mapping function (or the inverse of it more precisely) a small neural network was trained for each gas-sensors
pair. A neural network was chosen because it is versatile and can learn a wide range of nonlinear relationships without
having to specify parameters for a fixed relationship. The mapping functions for two SAWs are shown n Fig. 8. The
interpolated curve is from the neural network that was trained from the test points. The plots clearly show the mapping

functions have been accurately learnt.

3.3 Testing Data

To evaluate the two versions of the mapping method and their performance a series of 18 test protocols were developed,
a selection is shown in Fig. 9. They start with simple conditions of individual hits with different hit times, and increase
in difficulty where the hits and the background interferents both have time varying concentration profiles. In the last

few protocols the hits are just smooth increases in concentrations from zero with no well defined instant where the gas
is turned on, which is to model a plume like scenario.

The results for three versions of the mapping methods are shown in Fig. 10, along with the gas delivery profile and
raw SAWs responses. Figure 10a classifies to the analytes and interferents, Fig. neb only classifies to the analytes, and
Fig. coc is the same as (b) except a threshold on the variance of the back calculated concentrations is in place. These
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background.
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Figure 7, Training data for a SAW (left) and SM40 (right) to DCP. The magnitude is taken at the end of the exposure.
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Figure 8 Plots of the response magnitude for a SAWr (left) and SMO (right) to DCP, DMMP and diesel The large markers are
the data points from training and the interpolated points are from the neural networks
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results show the sensors are selective against diesel, however when methanol is delivered in the background of diesel are
noticeable response is produced. Interestingly, when delivering methanol alone there is a negligible response. In general,
the best results over all the profiles as highlighted above was achieved using the method of Fig. lOc, Note how the
threshold caused the omission of the transient parts of the response, which should filter out false readings while sensors
stabilize.

20 2.2..... - - -- -P Gas Delivery i

0 0

0 20 , ,

(a) (a)
,0 1o .. .. . . . . . . .. .

0 0St ,.. hi -I

20

100 0 10

20 Mc 20/c

10 .. . . . . . .10

0 or il l

020 (d).

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time Imins]

Figure 10. Comparison of the mapping classification and quan- Figure 11. Comparison of the fou r methods to process the vari-

titation methods, DMMP is shown at I0x actual ances of the concentrations. DMMP is shown at 10x
concentration actual concentration.

Another problem when dealing with interferents, or any wide variety of gases, are the different concentration ranges each
gas can be present at. For example, assume three sensors determine a given response is gas A with concentrations 8, 9,
and 10, or gas B with concentrations 207, 209, and 214. Using the standard rule of k = argminj oj would give gas A

as the best choice. However, with respect to the magnitude of the concentrations gas B may be the better choice. Four
options for the argument of the argmini expression are listed below and evaluated for certain conditions.

a) raw-straight: k = argmninj aj

b) raw-normalized: k = arg niiiij cr/pjp

c) log-straight: k = arg mini ýTj

d) log-normalized: k = arg iinj Q:/ftj

The overhat denotes the standard deviations or means are taken from the log concentrations. When there is a clear cut

winner the choice of variance calculation does not make much difference. It is when there are two or more gases that

are at about the same variance measure that the choice of methods becomes important. For this reason sequences were

focused on (where diesel was included in the classifier) where there were misclassifications or low confidence levels.

Figure 11 shows the results of the four variance calculation methods for one of the test sequences that has individual hits

of DCP, DMMP and diesel. It is clear that using unmodified concentrations tends to bias the gas choice to those with

lower concentrations. Since DMMP has the lowest concentration it often tends to be the likely candidate, as shown in

Fig. 11c. The results of methods a) and b) are very similar and give the best results. The method b) does a satisfactory

job, but has a slight tendency to select DCP over DMMP. It should be noted that the performance of each method may

vary with the types of sensors used and the application they are used in.
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4 Conference Seminars

There were 625 participants. 445 papers were accepted, which was 55 % of the total submitted papers. There were 7
parallel tracks (6 oral and 1 poster) for the three days. The poster sessions had the same weighting of papers, i.e. will
be in the proceedings with a full write-up.

The following subsections are very brief summaries of some selected seminars. Regarding the code: the first letter is the
weekday, the second number is the session number, the third letter is [L]ecture or [Ploster, the next letter A-F indicates
the parallel stream, and the last number the seminar number in the session.

The proceedings will be sent out on CD within a couple of weeks of the conference.

M2P-P2: A portable gas recognition system based on metal oxide gas sensor array

This was just commercial SMO sensors packaged into some type of portable unit used to distinguish between S02
(20ppm), N02 (1-Sppm), H2S (1-Sppm). Don't recall seeing mixtures, but need to check the proceedings. They used 50
min hit, 50 min recovery cycles, which is very long; and they extract feature from the transient response for the features.

M2P-P4: The characterization of nanostructured copper-doped tin oxide films for gas sensor

microarrays

- Just to note they used RF magnetron spluttered technique to produce SnO2-CuO sensors that were sensitive towards
NH3 (this is a gas of interest to SRD).

M3L-A-2: Metal oxide semiconductor gas sensors utilizing modified zeolite catalysis to
improve selectivity

Uses molecular sieve materials to increase selectivity by targeting particular gases. The sensors are SMOs (2 mm 2) at
400C, the sieve materials are zeolites. These are placed on the sensor with thickness of 0, 50pm and 100pm. Used
several different types of zeolites. They showed the sensitivity decreased as the zeolite was made thicker. Several sensors
were integrated into a enose system.

-- They showed zeolites changed the sensitivity but no golden bullet for the selectivity as you might hope from a sieve
material. There was nothing in their results that suggested anything promising that we didn't see.

M3L-A-3: Gas sensors based on nanoparticle W03 thick films

They used commercial W03 nanopowder from Aldrich, this was mixed with InCl3 or BiCI3 and screen printed onto the
platforms. It was annealed at 600°C, which removes the chlorides, just leaving the doped W03 I suspect. The dopents
were at 1.5, 3.0 and 5.0 percent weight; run at temps 250, 300, 350; exposed to N02 (1-10ppm), CO (10-100ppm),
NH3 (10-100ppm); no mixtures.

They ran some standard characterization tests: PCA using sensitivities, SEM showed average grain size 60-80 nm, X-ray
spectroscopy, XRD analysis. Provided two mechanisms of sensing for Bi and In dopents.

-- Probably a reasonable piece of work, but I didn't see anything that was particularly novel or new.

IEEE Sensors 2004 Conference (24-27-Oct-2004) - Greg Harmer Page 10



M3P-P8: ENT bacteria classification using a neural network based Cyranose 320 electronic
nose

I was interested in this due to the use of the Cyranose 320. They used the Cyranose to get the raw responses and custom
processed the signals. Three unsupervised methods (PCA/fuzzy k means/SOM) were used to extract the features, which
were then classified using supervised classifiers.

--- An application of several classification algorithms with the Cyranose 320.

T2L-B-1: Improving the classification accuracy in electronic nose using multi-dimensional

combining (MDC)

Again, the Cyranose 320 was used the gather the raw data. A number of features were extracted from the transient
response, these were reduced in dimension by either PCA, ICA or LDA. These reduced features were then passed into a
number classifiers which were combined (I think this is referred to as the MDC). They said the LDA transform performed
the best.

-* I am still a little unsure on exactly the implementation of the MDC, but will check out the paper when the proceedings
arrive.

T2L-B-2: Principal discriminant analysis of gas sensor transients

When we wish to reduce the dimensionality of raw data, the method used depends on whether the information is contained
in the means (use LDA) or in the variances (use PCA) of the data. However, what if the information is a combination
of both? Combine the PCA and LDA.

Introduce a regularization parameter,
T = (1 - i)S,'SI, + yK'. (4)

where the first part is the component of LDA and second part is the component of PCA. We then just project the n
eigenvectors of T in the normal way. The results shown, generally indicated that as the number of training data increased
the higher the proportion of LDA that was used. See Fig. 12 for some sketches of the results. The downside is that to
find the optimal - an iterative search (using some variant of the hold-out method for example) needs to be performed,
so it is dependent the type of classifier you use I suspect.

-, This was an informative seminar that contained a novel approach I haven't seem elsewhere, something that I will
integrate into SRDs processing software.

T2L-B-3: Feature evaluation for an electronic nose

Uses six SMOs with five features extracted from the transient response, which gives a total of 30 elements in the feature
vector. The question asked is what subset (if any) of these features gives the same or better performance. That is, what
features give the most information. Benchmarking against using all the features an exhaustive search was done with
up to five features (using 3-nearest neighbor classifier for validation). They showed best results with 5 features, which
performs better than when using all the features

- This agrees with what SRD has found with classification, a sensor must provide new information to the array otherwise
it just dilutes the effort of the others. I would like to seen how a PCA/LDA of the full vector performs in comparison for
each number of features - would be a more apples to apples benchmark. I'll check the proceedings when it comes out.
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Figiure 12. (a-b) Showing the how the number of training samples affects the optimal regularization parameter. Comparisons of
PCA, LDA and T were shown for colas (c) and juices (d).

T2L-B-4: Principle component analysis and pattern recognition combiner with visible spec-
troscopy in the classification of food quality

Uses a laser system (via an optical fibre into an oven) to monitor the color of the cooking process of certain products (like

chickens for examples). Feature dimension of 945 is reduced to 3 via PCA. They showed a PCA diagram for different
cooking times. Basically a snake-like shape, similar to PCAs of an SMO with different concs of the same gas.

-* This is just a color mapping process, nothing particularly new here. Not sure why a cheap CMOS chip couldn't be

used.

T2P-P20: Wafer level packaging of micro-machined gas sensors

This grabbed my attention due to its use of micro-hotplates and small sampling chamber (something like we've discussed

as SRD). However, upon questioning him (D. Braid) on the source of their hotplates, he could not say - proprietary
information.
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T2P-P13: QCM sensors for ammonia gas using clay/polyelectrolyte layer-by-layer self-

assembly

Basically described making highly sensitive NH3 QCM sensor. He claimed (verbally) it was selective against ethanols
('ols') and H2S ('sulfides').

T3L-A-3: Millisecond response time measurements of high temperature gas sensors

Use of SiC sensors to deal with harsh environments for the detection of H2 based species. Measurement uses the
capacitance, they adjust the voltage to maintain a constant capacitance, then we can tell what gas is present due to the
applied voltage, see Fig. 13c.

Figure 13. (a-b) Schematics of the gas delivery method. (c) The relationship between C' and t,,, for 02 and H2. (d) Sensors

response,

In order to change the gas delivery quickly, they set up a laminar flow of the two gases (adjacent and parallel) This was

verified using laser induce fluorescence on one of the gases. This is subjected to a sensor that is mounted on a platform

that can rotate three degrees in 2 ms, see Fig. 13a-b. A typical response is shown in Fig. 13d.

- A novel gas delivery setup with gas responding sensor,

T3P-P3: Fast variable selection for gas sensing applications

Commonly, sensor systems have many 100's of variables (i.e. feature length), and we need a method to choose the

optimal subset (cf T2L-B-3). They first use a coarse method to cull out the non-specific variable, then they use a fine

tuning method to refine the number of variables.

The coarse method uses a separability measure for each dimension (variable) and those over a particular threshold are

selected. The separability measure seems very similar to the t or z-statistic (though this was not mentioned), Fine tuning
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was done by forward selection (additive from zero) or backward elimination (subtract from full coarse set). GA's was
were used as a benchmark. Further questioning about the poster revealed the most of the smaller sets of variables were
subsets of larger ones even if derived by different methods.

- The use of the t or z-statistic is one of the proposed processing methods for reducing the dimensionality of the spectra
for the In-Aid project.

T4L-C-1: Challenges and opportunities in multi-sensing microsystems - a case study

This seminar was pretty much an overview of current projects. Of interest was the micro-GC (MEMs): greater than 30
components, less than 10 ppb with pre-conc, 2-10 min analysis, less than I cm 2. See Fig. 14 for a schematic.

Figure 14 A schematic of the micro-GC system.

The long term version will have 1-2cm x 5cm and less than 10mW per analysis.

T4L-C-2: Source localization with a network of electronic noses

A two-step approach for locating an emission source based on analytical diffusion-advection model using point concen-
tration measurements. These can be taken from an enose for example. The advection part of the transport model helps
eliminate multiple solutions.

- This sounds useful as application to the LACIS system as described in the HSARPA proposal. I will have to look into
in more depth in the proceedings.

T4P-P23: A precise 1/f noise spectroscopy setup for sensor characterization

This describes a method for more accurately determining the 1/f spectra, which involved quite a complex setup.
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-- The main interest here was the similarity to the noise work done for ONR. They used thyristor or something, but have
done it with SMO, they are a lot more noisier. Interesting they found the f,.,at,, at about the same frequency of 10 ish
Hz that we found from our noise work.

W2L-B-2: Cancellation of chemical backgrounds with regularized Fisher's linear discrimi-
nants

The problem is cross selectivity in gas sensors; how to cancel multivariate responses? They considered three gases
in mixtures and neutral (air?), which gives 7 combinations. The analysis of a binary mixtures can be shifted to one
component by adapting to the other one. To do this they reformulate the LDA to discriminate primary analytes rather
than each mixture, see Fig. 15.

AA

C A-c

C r A

Figure 15. Consider 3 gases in uni-. bin-, and tertiary mixtures. (a) The straight out LDA treating each group separately, then in
(b) drawing out all the mixtures with A in them

They are able to assign proportions to the selectivity of each groups. Seems a bit like just relabelling, but there is a little
more to it.

-- Looks interesting. To pick out one group you would need to know in advance what group to pick out as to know
what LDA transform to use - maybe do all and see which one matches best (i.e. has the highest confidence). I will need
to check out the proceedings to get more of the mathematical details.

W21L- B-5: Optimized multi-frequency temperature modulation of micro-hotplate gas sensors

- The interest in this seminar was the use of hotplates. I spoke to the presenter after the seminar and he gave two
sources (collaborators or theirs) of hotplates. I am in the process of following this up to get points of contacts and
specifications.

5 Summary

This work has demonstrated the use of SRD's sensor technology in a real-time application, which can identify the gas
and quantify its concentration. This was achieved using a relatively novel technique that utilizes the correlations between
individual sensors in an array. This technique is robust in that bad sensors can be ignored without the need for retraining
the algorithm. It therefore implicitly supports the use of redundant sensors in the array. The results were presented at
the international IEEE Sensors 2004 conference in Vienna, Austria with a presentation and a paper that will appear in
the proceedings. The proceedings will also be listed in IEEE Xplore where they are searchable via the web.

At the conference information was also gained from seminars and posters by other researchers in the field. A brief
summary of selected papers is given in Sect. 4. Of particular interest were the signal processing topics dealing with
principle component analysis and linear discriminant analysis, and some possible suppliers of micro-hotplates for the
SMO platforms.
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Abstract 5 L/min is allowed through the 5 cm diameter pipe and 200 ccm
This work describes the use of an array of SAWs (surface is drawn offto a small 22 cm

3 
sensor chamber.

acoustic wave devices) to detect and identify chemical war- The remainder of this paper describes several classification
fare agents (nerve and mustard simulants) in a background strategies that can be used for classification and quantifi-
of interferents (methanol, diesel and hexane). Even in a cation, and how to deal with interferents. The results show
varying concentration and realistic gas delivery profiles, an how our sensors perform in the presence ofinterferents using
array of SAWs is able to identify and predict the concentra- realistic, time-varying concentration profiles.
tions ofsimulants in real-time. This application differs from
standard electronic noses (e-noses) as it is analytic. Using CLASSIFICATION AND QUANTIFICATION
SAWs that are highly sensitive to only the simulants with the In a typical e-nose system the preprocessed data is converted
appropriate classification algorithms a real-time chemical into meaningful results via the use of one or more classi-
detector can be realized. The system was tested with wide fiers such as neural networks, support vector machines or
range of gas profiles as was able to identify and quantitate probabilistic algorithms for example. The details of the clas-
the simulants accurately. sifiers will not be discussed here, but instead will be treated

as a black box system that outputs a list of classes and their
INTRODUCTION corresponding confidence levels. The selected class for an
Detecting chemical vapors requires a sensing system corn- unknown input pattern is the class with the highest confidence
bined with signal processing algorithms. The sensing sys- level. Three strategies that can be used for identification and
terms can range from a sophisticated GC-MS to an array of quantification are discussed.
simple chemical sensors such as those found in typical e-nose
applications. The work described in this paper uses surface One Step Method
acoustic wave sensors (SAWs) that are designed primarily for This method is one of the easiest approaches, specially if
the detection of chemical warfare agents (CWAs). This dif- you have an 'off-the-shelfclassifier' available. Each analyte
fers from most e-nose applications [3] slightly as they only class is divided into several subsclasses of different concen-
try to remember the signature of a particular mix of gases trations so the classifier actually trains to gas/conc pairs. This
(i.e. smell) with a limited ability to isolate the particular requires the concentrations to be discretized otherwise there
gases or determine their concentration. may be overlapping of the classes, which may degrade the
The motivation for this work is to develop a handheld chemi- performance of some classifiers.
cal detector specifically targeted at CWAs for use by person- This method is best suited for analytes that only occur at
nel such as the military and homeland security. The require- specific concentrations. To increase the concentration reso-
ments of a handheld device rule out well known expensive lution the number of classes need to be increased, which may
and bulky solutions such as GC-MS or laser spectroscopy cause the classification problem to quickly get very large.
systems. Thus, an array of inexpensive, simple sensors are Notwithstanding, probably due to the setup simplicity it has
employed with the use of pattern recognition processing. been used for a number of applications [3], though it is ac-
The sensors are based on SAW technology [2] with a 915 MHz knowledgedthat this method is not appropriate if the problem
quartz crystal oscillator used as the transduction mechanism size is likely to expand.
for a polymer sensing film. Based on the mass loading
phenomena, the amount of change in frequency is related Two Step Method
to the ambient concentration of the targeted gas molecules. The analyte is first determined and then the concentration is
The 915 MHz oscillators are used because the sensitivity in- found using this knowledge. Once the analyte is known, the
creases with frequency squared [2]. task of concentration determination is reasonably easy, and
To better simulate real world conditions, the laboratory based a number of methods would suffice.
system is open to the environment where room air is pulled It is important to choose the correct feature types to use at
through a large PVC pipe in which the CWA simulants each stage. In the first stage we wish to eliminate any con-
(DCP (I,5-dichloropentane) - mustard, DMMP (dimethyl centration information, leaving only the analyte information.
methylphosphonate) -nerve)and interferents (methanol, hex- Since the concentration predominately effects the magnitude
ane and diesel oil fumes) are injected. A flow of about ofthe response normalizing the points seems a logical choice.

IEEE Sensors 2004 Conference (24-27-Oct-2004) - Greg Harmer Page 16



The second stage can be accomplished by using the magni- (a) ()

tude information. Dividing the problem into two parts vastly i
reduces the computational demand on the classifier and the 0.s
concentrations can be from a continuous range.0.

Transient and Steady-State Information 04 I
The choice of features (i.e. transient or steady-state informa- 0.

tion) to use depends on the application ofthe sensors; ifthey 0 5 10 15 22 1 2 3 4 5 6 7 8

are to be used in an array configuration or individually. s_

The transient information is the'shape'ofthe response, that Figure 1. (a) Transient fingerprint of one sensor.
is the magnitude as a function of time. This response infor- (b) Steady-state fingerprints of eight sensors.

mation is very rich, it gives an indication of the underlying
film/gas reaction that is taking place. Using this information detection algorithm. To alleviate the extra burden this places
alone, even with a single sensor, SRD is able to discriminate on the baseline monitor feedback from the classifier could be
between gases within a limited concentration range. incorporated.
However, the transient information assumes the gas deliv-
ery conforms to a specific concentration profile, usually a Mapping Method
step-pulse, which needs to be exactly repeatable. The re- The idea for this method is not new, though a recent paper
peatability of the gas delivery is critical because the shape of where it is applied to e-noses highlights its potential [1]. It
the response is strongly influenced by the gas delivery pro- uses the fact that each sensor responds slightly different to
file. The problem with using the subtle differences between each analyte. By using the response-concentration mapping
response shapes is they will be dominated by the gas delivery functions for each sensor/analyte combination, the inverse
profiles if they are different. Hence, the delivery profile ends function can be used to back-calculate the concentrations
up being classified as opposed to the gas identity, from the response.
For certain applications extraction of the transient informa- The best candidate will have the smallest variance (or stan-
tion may be acceptable if there is total control of the gas dard deviation) a2 = V Icij] with a concentration of p k =
delivery to the sensors. However, for a handheld detector E[ckl where k = arg minm a? . Using the standard devia-
that is continuously sampling from the environment there is tions a confidence of tlk = (I/ck)/• •, (t/Ia,) was defined.
no control of the concentration profile of the delivered gas. The main difference between the mapping and the two step
In these circumstances the only available, reliable informa- method is the way the winning analyte is chosen; via a pur-
tion is the instantaneous magnitude of the sensors. In this pose built classifier or a minimum error approach respec-
case each sensor provides a single point of information - not tively. Arguably the mapping method could be considered as
enough to characterize even two gases. Thus, the use of an an integrated two step approach since it requires the knowl-
array of sensors is imperative for successful discrimination edge of the gas before concentration determination. How-
between gases. ever, it is considered separate since it does not require a
In the first step of the two step classification process the re- purpose built classifier. One may ask how does this method
sponses are first normalized against the baseline to calibrate differ from using the steady-state fingerprints that are com-
to their current operating point, for the SAWs this involves monly used? The explanation follows below.
a dc shift. To remove concentration information the magni-
tudes need to be standardized. For the transient information Comparison of Mapping and Steady-State Methods
the response shapes are scaled to unity (see Fig. Ia) and Intuitivelythe mapping and steady-state methods may appear
for the steady-state information the magnitudes are scaled to similar, both employ the rescaling of the raw magnitudes to
zero mean and unity variance (see Fig. I b). This results in determine which gas is the most likely. The steady-state
the fingerprint for a particular gas, which can then be passed method uses a classifier to do this whereas the inverse uses a
to a classifier. Once the gas is determined the unsealed mag- comparison of variances.
nitudes can be used to determine the concentration in the However, a very important distinction is that the mapping
second step. method implicitly caters for nonlinear concentration rela-
Although the gas delivery becomes less critical when us- tions whereas the steady-state method assumes linear rela-
ing steady-state information, the monitoring of the baseline tions. This is evident by the scaling process, the steady-
becomes vital. Typically, the sensor baseline drifts due to en- state method scales all the magnitudes by the same constant
vironmental fluctuations such as temperature, humidity and amount. In contrast, the mapping method uses the trained
pressure. Usually these are very slow-time varying and do mapping functions for each gas/film combination. The seal-
not present much ofa problem. However, in certain instances ing method for the steady-state could be extended to be non-
they may change on the same time scale as a legitimate re- linear and gas dependent if desired, in which case the two
sponse, which presents a problem. In terms of detection, methods would effectively be the same.
false negatives may be avoided by implementing an outlier To illustrate this concept, an artificial eight sensor array was
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created with arbitrary mapping functions for four gases. In be the better choice. Four options to standardize the variance
the first case linear mapping functions were used. To easily are listed below.
view the fingerprints the first two principle components are a) raw-straight: k = arg min, 1,7
plotted, shown in Fig. 2a. Since the sensors are linear all b) raw-normalized: k = arg minn 4r 3!j
the points for the same gas coincide. This shows that irre- c) log-straight: k = arg minl &j
spective of the concentration, the scaled fingerprints within d) log-normalized: k = arg min, aj 1A)
each gas are identical. Figure 2b shows the same plot for The overhat denotes the standard deviations or means are
quadratic mapping functions. The points for each gas do not taken from the log concentrations. Alternatively, the means
coincide due to the use of a linear scaling technique with response magnitudes could be used in place of concentra-
inherently nonlinear (quadratic) data. The results for the tions. When there is a clear cut winner the choice ofvariance
mapping method (not shown) were identical in both cases, calculation does not make much difference. It is when there
Thus, it is clear that the mapping method is more robust are two or more gases that are at about the same variance
against nonlinear sensor characteristics, measure that the choice of methods becomes important. For

(bc) this reason sequences were focused on (where diesel was in-

cluded in the classifier) where there were misclassifications
or low confidence levels.

0 p RESULTS

0 • In order for the mapping method to work well, the same mag-

nitude of response independent of the gas exposure history

Pcl Pei of the sensor is required. Note that when the concentra-
tion changes sharply, some time is required for equilibrium

Figure 2. Unear (a) aind quadratic (b) fingerprints, to be reached, which is what needs to be reproducible. To

verify our sensors are reproducible five gas protocols that
This is one of the reasons for selecting the mapping method, have vastly different starting profiles but that end with the
Additionally, it is easy to generate training data since steady- same concentration were employed. Three minutes were
state information is more immune to difference is gas delivery given at the final concentration to allow the sensor to reach
and it is very tolerant of failed sensors (does not require equilibrium. As shown by Fig. 3a the response magnitudes
retraining), converge at the end of the hit, which verifies there is little

memory effect of the sensors.
Dealing with Interferents When dealing with individual gases the sensors do not nec-
Ideally perfectly selective sensors would be available that essarily have to be selective, they just need to have different
only respond to one gas of choice in which case interferents mapping functions. However, when dealing with interferents
could be ignored. But this is almost never the case, therefore the sensor needs to be reasonably selective. Figure 3b shows
signal processing is required to compensate. Two options
are:o
"* Train to the analytes and interferents. This may suffice -2

for a small number ofinterferents, but could become too
complex for many interferents. This method could have

trouble with false-positives, i.e. analytes are interpreted D-

as interferents. 
D I

* Only train to the desired gases and tighten the robust- --l

ness controls, like input limits and variance thresholds 0 ISO 360 4 720 9Mo 080

for example. This would be more robust when many
interferents are possible, but could have trouble with 0 .. .DCPw. •
false-negatives, i.e. interferents are interpreted as an- DCP-

alytes, which is usually more preferable than false- -5 ... S-

positives. -10 DMMe

Another problem when dealing with interferents, or any wide - -- iMa..1

variety of gases, are the different concentration ranges each g -20- 0MW f M

gas can be present at. For example, assume three sensors - DMMP-
determine a given response is gas A with concentrations 8, -30, •

9, and 10, or gas B with concentrations 207, 209, and 214. o 60 120 1o 240 30D 3W 420

Using the straight variance the best choice is gas A. However,

with respect to the magnitude of the concentrations gas B may Figure 3. Sensor validation.
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the responses for DMMP and DCP with diesel, methanol and From experiments ofthe four variance standardization meth-
hexane interferents in the background carrier air. The sensor ods the unmodified concentrations c) tends to bias the gas
shown is selective to DCP and DMMP but also reacts a little choice to those with lower concentrations. Since DMMP has
with diesel. the lowest concentration it often tends to be the likely can-
These two tests show that the sensors have the characteristics didate. The results of methods a), b) and d) are similar and
that are required by the mapping function. That is they have give good results. It should be noted that the performance
good selectivity towards the gases to be detected and they are of each method may vary with the types of sensors used and
very invariant to the exposure history of the gases. the application they are used in.
To evaluate the mapping method and its performance a se-
ries of 18 test protocols were developed. They start with CONCLUSION
simple conditions of individual hits with different hit times, This work has shown that there is a processing gain when us-
and increase in difficulty where the hits and the background ing the mapping method for classification due to the implicit
interferents both have time varying concentration profiles. nonlinearity built into the system. The higher the nonlin-
In the last few protocols the hits are gradual increases in earity of the sensors, the more gain that can be attained. In
concentration from zero to model a plume like scenario. addition, several modifications were explored to determine
The results for three versions of the mapping method are the performance in the presence of interferents. The best
shown in Fig. 4, along with the gas delivery profile and raw results were found when using mapping functions of only
SAW responses. Figure 4a classifies to the analytes and in- the gases to be detected and normalizing the variances with
terferents, Fig. 4b only classifies to the analytes, and Fig. 4c respect to the back-calculated concentrations. The use of
is the same as (b) except a threshold on the variance of the SRD's selective sensors in these experiments enhanced the

back calculated concentrations is in place. These results detection of the CWAs, but the specifics of the sensors were
show the sensors are selective against diesel, however when not the focus of this paper. The use of selective sensors is
methanol is delivered in the background of diesel a notice- one of the main properties that differentiate SRD's system
able response is produced. Interestingly, when delivering from a typical e-nose, they allow targeting of specific gases

methanol alone there is a negligible response. In general, the that can then be quantified.
best results considering all the profiles as highlighted above Since the motivation for this work is directed towards the
was achieved using the method of Fig. 4c. development of an inexpensive handheld detector, it is pri-
An important observation from all of the results of Fig. 4 marily applicable to systems that only have very simple gas
is during the transient part of the response the classification delivery subsystems. That is, without the use of valves or

is unreliable. This occurs at the start of a hit, after the end flow controllers, which means only the instantaneous mag-

of a hit, or during a hit when there is a steep concentration nitudes can be considered. Future development plans entail
gradient. The threshold helps omit parts of the transient increasing the complexity of the gas delivery subsystem to

response that occur while the sensors stabilize. Once the include some valve switching components. This will allow

sensors equilibrate the results become more reliable, the delivery of a short pulse from which the more informa-
tion rich transient response can be utilized. The length of the

20 .pulse determines the trade-off between obtaining enough of
the transient signal to make a reliable classification and main-
taining the approximation that the concentration is constantduring the pulse. The sensors that are exposed to the pulse

10) need an uncontaminated baseline, which can be achieved by

LL.....J~i......Ua.numberI of known methods.
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Figure 4. Comparison of the mapping methods. DMMP
is shown at 1Ox actual concentration.
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